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INTRODUCTION

The new cerebral cortex (neocortex) and the new type of pyramidal neuron are mammalian
innovations that have evolved for operating their increasing motor capabilities while
essentially using analogous anatomical and neural makeups. The human neocortex starts to
develop in 6-week-old embryos with the establishment of a primordial cortical organization,
which resembles the primitive cortices of amphibian and reptiles. From the 8th to the 15th
week of age, new pyramidal neurons, of ependymal origin, are progressively incorporated
within this primordial cortex forming a cellular plate that divides its components into those
above it (neocortex first layer) and those below it (neocortex subplate zone). From the 16th
week of age to birth and postnatally, the new pyramidal neurons continue to elongate
functionally their apical dendrite by adding synaptic membrane to incorporate the needed
sensory information for operating its developing motor activities. The new pyramidal
neuron’ distinguishing feature is the capacity of elongating anatomically and functionally
its apical dendrite (its main receptive surface) without losing its original attachment to first
layer or the location of its soma and, hence, retaining its essential nature. The number of
pyramidal cell functional strata established in the motor cortex increases and reflects each
mammalian species motor capabilities: the hedgehog needs two pyramidal cell functional
strata to carry out all its motor activities, the mouse 3, cat 4, primates 5 and humans 6.
The presence of six pyramidal cell functional strata distinguish the human motor cortex
from that of others primates. Homo sapiens represent a new evolutionary stage that have
transformed his primate brain for operating his unique motor capabilities, such as speaking,
writing, painting, sculpturing and thinking as a premotor activity. Words used in language
are the motor expression of thoughts and represent sounds produced by maneuvering
the column of expiratory air by coordinated motor quivering as it passes through the
larynx, pharynx, mouth, tongue, and lips. Homo sapiens cerebrum has developed
new motor centers to communicate mental thoughts (and/or intention) through motor
actions.
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The development of Broca’s area as well as some anatomical

The vertebrate brain (including that of non-mammals), in the
opinion of many, is a premotor organ that operates animals’
motor activities (Sperry, 1952; Ortega y Gasset, 1957; Llinds, 2001;
Wolpert and Flanagan, 2010; Marin-Padilla, 2011). The brain’s
motor neurons operate the animal musculature in the search for
food and a mate and in evading danger. Humans, in addition,
are capable of expressing thoughts (intentions) through motor
actions. Words (spoken, written, sang, or in sing language) are
simply motor expressions of thoughts. The column of expiratory
air is maneuvered to produce sounds by synchronized muscular
quivering as it passes through the larynx, pharynx, mouth, tongue,
and lips. Ortega y Gasset (1957) expressed this idea best; “There-
fore, there is no genuine motor activity without a previous thought,
and there is no genuine thought if is not duly referred to a motor
activity and enhanced by its relation with it”. Writing, painting,
sculpturing, playing musical instruments and/or practicing sports
are likewise coordinated motor activities for expressing mental
thoughts or intentions.

modifications in the larynx have been associated with the evolution
human language. In my opinion, these transformations are not the
cause but the consequences of the human need for expressing his
thoughts through motor actions and the capability for accom-
plishing it. Humans could equally use their hands (even the feet)
motor capabilities to express and communicate thoughts. Know-
ing that a cortical lesion in specific motor regions eliminate some
motor activities tell us nothing about how the destroyed neurons
were able of operating them. What type of cortical neuron, shared
by all mammals, operates these coordinated and complex motor
activities and how it could accomplish the task remain essentially
unknown because it has not been adequately studied.

While our understanding of the synapse ultrastructure and
biochemistry of synaptic transmission (the micro scale) and the
interpretation of images from magnetic resonance brain studies
(the macro scale) are quite adequate, the functioning of a single
neuron (the Cajal scale) that receives thousands of inputs, estab-
lishes contacts with thousand others and operates animals motor
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activities remains essentially unknown as well as inadequately
studied.

Mammals (including humans), regardless of significant vari-
ations, belong to a single vertebrate order that share similar
anatomy, analogous musculature, comparable motor activities,
and a new type of cerebral cortex (the neocortex). While mam-
mals’ body musculature, limbs anatomy (bones, joints, muscles,
and nerves alike) and motor activities have remained essentially
unchanged, their motor capabilities have increased through hedge-
hogs, mice, cats, simians to humans. How a common and shared
cerebral cortex with similar type of neurons operates mammals’
increasing motor capabilities is an unresolved question that we are
exploring herein.

Prenatal developmental Golgi studies of the motor cortex of
hamsters, mice, rats, cats, and humans have provided essential
information concerning the unique and shared features of the
motor cortex pyramidal neuron among mammals (Marin-Padilla,
1970, 1971, 1978, 1983, 1990, 1992, 1998, 2011, 2012). The prena-
tal development, morphology, and functional organization of the
motor pyramidal neuron are evaluated herein, at the Cajal scale.
We are using, preferentially, the human data with additional notes
from other mammals.

In the present paper, we are unconcerned with the cortical
location of motor activities and/or with the origin of human
thoughts, our sole aim is to describe the type of cortical neu-
ron that may capable of operating mammals’ increasing motor
capabilities and, in humans, the motor expression of thoughts. A
better understanding the human motor cortex pyramidal neuron,
at the Cajal level, should provide invaluable and needed informa-
tion for the correct interpretation of data obtained from the other
two -micro and macro- neuronal scales. The query about what
make us humans and different from other primates will also be
reassessed.

THE HUMAN BRAIN
What makes us humans, among primates, and capable of lan-
guage has concerned peoples, from everywhere, since the dawn
of our existence as well as philosophers, theologians, writers, and,
recently, neuroscientists. Despite innumerable attempts to explain
it, the enigma remains unsolved. Most concur that the answer
must be in our brain unique structural and functional organiza-
tions. Our brain large size and complex structural organization
and, more importantly, our capacity for using it for the expression
of our mental thoughts and intentions through motor actions are
most recent studies essential aims. Perhaps encouraged by the fact
that DNA studies (evolution genomics) of primates have failed to
provide data for explaining the uniqueness of our brain cognitive
activities (Varki and Altheide, 2005; Marques-Bonet et al., 2009).
While some believed that the differences between our brain
and that of higher primates are of degree but not of kind (Darwin,
1936) others, unsatisfied with that explanation, continue searching
for new answers (Cajal, 1911; Elston, 2003; DeFelipe, 2011; Elston
etal.,, 2011; Marin-Padilla, 2011). Cajal cognizant of the cortex
cytoarchitecture pointed out: “It is presumed that the extent and
complexity of the gray matter (cerebral cortex) are closely related
to the psychological hierarchy of each mammalian species” (Cajal,
1911). De Felipe proposes that the large size of our brain and its

great structural complexity have permitted the spectacular devel-
opment of our cognitive and mental skills (DeFelipe, 2011). The
number and density of dendritic spines (synaptic structures) in
different cortical areas may reflect functional differences among
cortical regions (Elston etal., 2011). Pyramidal cells of the pre-
frontal cortex have, on average, up to 23 times more dendritic
spines than those in the primary visual area (Elston, 2003). The
unique structural specialization of pyramidal cells as well as the
circuits they establish has permitted the evolution of human cog-
nitive processing to its present state (Elston, 2003). The ongoing
specialization of the cortex pyramidal neuron may have played
an important role in primate executive cortical functions (Elston
etal, 2011). It is interesting that the focus of these studies have
been on our cerebrum gray matter (where neurons reside) struc-
tural complexity as well as on the nature of its pyramidal neurons,
which is explored herein.

These postnatal studies are in the right track since understand-
ing the structure may be the first step for understanding and
interpreting function. Cajal celebrated “arrows” are an excellent
testimony of that fact. However, how our cerebrum structural
complexity is translated into the intricate motor activities involve
in language and other unique motor activities remains unsolved.
One possible approached for solving this compound riddle might
be to reduce it to a developmental study a single neuronal type
-the motor pyramidal neuron- that supposedly operates mam-
mals’ motor activities. Cognizant that others neuronal elements
do participate and contribute to this neuron functional activity.
The pyramidal cell (Cajal’s psychic neuron) is the most abundant
and fundamental cell type of mammals’ new cerebral cortex and,
in my opinion, a mammalian innovation (Marin-Padilla, 2011).
This neuron prenatal development the structural and functional
organizations are investigated herein.

THE MAMMALIAN NEW CEREBRAL CORTEX

Mammals’ new cerebral cortex (neocortex), the last neuronal stra-
tum added to the vertebrate’s brain axis, represents a new type of
cortical organization. Its development starts, in the early embryo,
as a primordial cortical organization composed of extracortical
neurons and afferent fibers and of efferent ones (Marin-Padilla,
1971, 1978, 1983, 2011). In humans, it is first recognized in 6-
week-old embryos and is fully established by seven weeks of age. Its
formation is a rapid (days) process that extends subpially through
the entire brain. It is avascular, precedes the arrival of the new
pyramidal neurons and is a prerequisite for their ascending migra-
tion and subsequent incorporation (Marin-Padilla, 2011). This
primordial cortical organization is also recognized in the early
neocortex of mouse, hamster, and cat embryos (Marin-Padilla,
1971,2011).

Mammals’ primordial cortex cytoarchitecture (neurons, fibers)
and superficial plexiform organization resembles the primitive
cortex of amphibians and reptiles (Marin-Padilla, 1971, 1998).
These similarities are not surprising since amphibian, reptiles, and
mammals share similar skeleton, body musculature, four limbs
with bones joints muscles and nerves alike as well as analogous
early motor activities. Moreover, mammals’ neocortex will have to
inherit the original amphibian-reptilian motor blueprints to oper-
ate the early embryo’s motor activities. Those motor blueprints are
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probably incorporated into mammals’ primordial cortical orga-
nization. Early mammalian embryos (including humans) share
many similar features with other vertebrate’s embryos, including:
primitive appearance small heads undulating movements extremi-
ties with flippers and a tail. The appearance of a 6-week-old human
embryo is not unlike that of any other mammalian embryos. How-
ever, by the seventh week of age, the embryo (in only a few days) has
become distinctly human due to the extraordinary enlargement of
the head frontal region caused by the underlying expanding cere-
brum (Marin-Padilla, 1983, 2011). No other mammalian embryo
shows this degree of cerebrum and head enlargements.

Mammals’ new cerebral cortex distinguishing features include
the combination of a primordial cortical organization and the
subsequent incorporation, within it, of a new type of pyramidal
neuron.

THE MAMMALIAN NEOCORTEX NEW PYRAMIDAL NEURON
The neocortex new pyramidal neuron is a mammalian innova-
tion, shared by all, characterized by distinctive developmental,
morphological, and functional features. They originate in the
cortex ependymal neuroepithelium and attracted by Reelin from
Cajal-Retzius cells and using radial glial fibers as guides ascend
reaching the first layer establishing contacts (dendritic bouquets)
and remain functionally anchored to it for life (Marin-Padilla,
1990,1992). Their incorporation occurs within the primordial cor-
tex dividing its components into those above and those below the
newly formed and expanding pyramidal cell plate (PCP). Original
elements above the plate become the new cerebral cortex first lam-
ina components and those below it components of the so-called
subplate zone. In humans, the incorporation of the new pyrami-
dal neurons within the primordial cortex occurs from the 8th to
the 15th week of age establishing the neocortex gray matter, where
most neurons reside. During this time, all new pyramidal neurons
are functionally anchored to first layer by dendritic bouquets, are
undifferentiated and their variable sizes reflect their arrival time.
The pyramidal-like neurons of amphibians and reptiles primi-
tive cortices share similar functional anchorage to Cajal-Retzius
cells and the operation of their motor activities. The human
embryo early motor activities are probably operated by the sub-
plate pyramidal-like projective neurons of the primordial cortex
since the new pyramidal neurons function does not start until the
15th week of age.

All new pyramidal neurons must ascend, reach the first lamina,
develop a dendritic bouquet and become functionally anchored
to it (Marin-Padilla, 1990, 1992). Consequently, their apical den-
drites, while retaining their original anchorage to first layer, will
have to elongate anatomically to accommodate the arrival of sub-
sequent neurons. By the 15th week of age, they have formed a
stratified cellular plate about 100 cells thick of closely packed
undifferentiated new pyramidal neurons of different sizes all func-
tionally anchored to first layer (Figures 1A,B). This cellular plate,
sandwiched between first lamina and subplate zone, represents
the neocortex gray matter. From the 8th to the 15th week of age,
this cellular plate is solely composed of new pyramidal neurons
of different sizes with smooth spineless apical dendrites bodies
without basal dendrites and unbranched descending axons that
start to reach the underlying white matter (Figures 1A,B). The

Human Motor Cortex
15-week of age
Pyramidal Cell Plate

FIGURE 1 | Composite figure of photomicrographs (A,B) from rapid
Golgi preparations of the motor cortex of 15-week-old human fetuses
showing the developing gray matter neuronal composition,
organization, and stratification. (A) Photomicrograph showing (at high
magnification) the developing motor cortex gray matter neuronal
composition and distribution through seven (1-7) different strata. At this
age, the pyramidal cell plate formation is completed. It is composed only of
pyramidal neurons of different sizes, anchored to first lamina, with smooth
spineless apical dendrites, bodies without basal dendrites and unbranched
descending axons, most of which have no yet reached the underlying white
matter. The neuron'’s size (apical dendrite length) denotes its arrival time at
first lamina. (B) Montage of selected photomicrographs of the human
motor cortex pyramidal plate showing (at a similar magnification) the
neurons different sizes (apical dendrite length) and stratification. Their size
ranges from the smaller superficial and last to arrive at first lamina and
establish functional contacts (dendritic bouquets) with Cajal-Retzius cells
to the larger, deeper and first ones to arrive. The thick horizontal axons
(arrows) of Cajal-Retzius cells are also shown (A,B). Scale: 50 wm. Some of
the larger, deeper, and older pyramidal neurons have started to develop
short basal dendrites (B, P1) and a few dendritic spines (arrow heads)
indicating the starting functional maturation of the motor cortex first (P1)
pyramidal cell functional stratum. The functional maturation of this P1
pyramidal cell stratum is accompanied by the incorporation of its local
microvasculature, protoplasmic astrocytes, and inhibitory neurons
(Marin-Padilla, 2011). (B) Inset. Hematoxylin and eosin (H & E) preparation
of the human motor cortex, at 15-week of age, showing the overall
composition of its various components: first lamina, gray matter, subplate,
white matter, matrix, paraventricular, and ependymal zones and the
ventricle (V). (Modified from Marin-Padilla, 2011).

apical dendrite length (neuron size) reflects the neuron arrival
time at first lamina. The deeper and larger ones were the first
to arrive at the first layer, the superficial and smaller ones the
last to arrive and the sizes of intermediate ones reflect their vari-
able arrival time (Figure 1B). During this developmental stage,
the developing gray matter is also crossed by a few ascending
white matter afferent fibers without collaterals that reach the first
lamina, by ascending radial glial fibers and by descending pial
perforating vessels without sprouting capillaries that reach the
neocortex lower zones (Marin-Padilla, 2011, 2012). Radial glial
fibers bifurcate several times and supply the endfeet needed for the
construction and maintenance of the expanding neocortex exter-
nal glial limiting membrane (EGLM) and for the manufacture
of its basal lamina (Marin-Padilla, 1995). The EGLM demarcates
anatomically the cerebrum [and central nervous system (CNS)]
from surrounding tissues and is only perforated by entering pial
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capillaries (Marin-Padilla, 2012). In other CNS regions, is also per-
forated by entering as well as exiting nerves. At this age, the pial
perforating vessels descend unbranched through the gray matter
reach the subplate, white matter and paraventricular zones and
establish anastomotic capillary plexuses among them throughout
these zones (Marin-Padilla, 2012).

At the 8th week of age, the apical dendrite length of the deep
and older pyramidal neurons is around 15 pm, by the 15th it
has anatomically elongated to around 275 pm and at birth it has
further elongated, both anatomically and functionally, to about
1,500 wm (Figure 3A). The number of spines per apical dendrite
has also increased from a few in 15-week-old embryos to around
2,000 in the newborn infant. In cats, the apical dendrite length
of deep and older pyramidal neurons increases from 25 pm, in
27-day-old embryos, to about 650 pwm by the time of birth
and from a few dendritic spines to about 700 (per dendrite)
reflecting the developing embryo increasing motor capabilities
(Marin-Padilla, 2011).

During the 15th-16th-week of age, the human motor cor-
tex undergoes a series of fundamental structural and functional
transformations (Marin-Padilla, 2011). The ascending migration
and incorporation of new pyramidal neurons into the develop-
ing gray matter is completed. The apical dendrites of the subplate
pyramidal-like neurons and the axons of Martinotti cells, both
from the primordial cortex, start to loose their original func-
tional contacts with first lamina and undergo a gradual regression
(Marin-Padilla, 2011). Eventually, they are transformed into deep
(subcortical) interstitial neuron of undetermined function. In the
early human embryo the subplate pyramidal-like neurons are
likely the source of the projective motor pathway to subcortical
centers and eventually to the embryo musculature for controlling
his early motor activities.

During the 15th to the 16th week-of age, some of the deep-
est, older, and larger pyramidal neurons start to develop short
basal dendrites a few apical dendritic spines and their descending
axons have already reached and penetrated into the underlying
white matter (Figure 1B). These changes imply the starting func-
tional maturation of the deepest and oldest gray matter neurons
and the establishment of the first (P1) pyramidal cell functional
stratum (layer V in current nomenclature) in the human motor
cortex (Figure 1B). These transformations imply that, at this
age, the original motor activity of the subplate pyramidal-like
neurons ceases while that of the deeper, older, and larger new
pyramidal neurons begins. In other words, the embryo’s motor
activities operated by the pyramidal-like neurons of the subplate
zone are changed to that of the fetus operated by the new pyramidal
neurons. The subsequent functional maturation of P1 pyramidal
neurons (as well as that of other pyramidal cell strata) will be a
progressive, ascending and stratified process, from lower and older
to upper and younger strata, induced and operated by the ascend-
ing penetration, into the developing gray matter, of thalamic and
other afferent fibers from the white matter (Figure 4A). Such that
while the deeper and older pyramidal neurons have started their
functional maturation, at this age, those of the above strata are still
undifferentiated.

Furthermore, the gray matter first anastomotic capillary plexus,
between contiguous perforating vessels, is also established, at this

age, throughout the lower and older pyramidal cells (P1) stra-
tum concomitant with its functional maturation (Marin-Padilla,
2011, 2012). Gray matter protoplasmic astrocytes are also first
recognized at this time, only among the gray matter new capil-
laries (Marin-Padilla, 1995). At this age, transversely migrating
undifferentiated cells are also recognized throughout the deep-
est pyramidal (P1) cell stratum (Marin-Padilla, 2012). These
migrating cells, of extracortical origin, represent the precursors
of the neocortex inhibitory neurons (Parnavelas, 2007; Marin,
2013). Their arrival coincides with the functional maturation and
microvascularization of the gray matter deepest (P1) pyramidal
cell functional stratum. At this age, the upper pyramidal cells
remain undifferentiated, avascular, without traversing inhibitory
neurons and wanting protoplasmic astrocytes.

The gray matter ascending functional maturation involve
the pyramidal neurons of each subsequent stratum and will
include the local incorporations of inhibitory neurons microvas-
culature and protoplasmic astrocytes on each ascending strata
(Figures 1-5). The gray matter ascending neuronal, microvas-
cular, and glial maturations increases the neocortex thickness
(upwardly) as well as the anatomical and functional elongations
of all pyramidal neurons’ apical dendrites. The neocortex even-
tual thickness should reflect the pyramidal neurons eventual sizes
(apical dendrite length) as well as the number of pyramidal cell
functional strata established on each mammalian species cerebrum
(Figure 4B).

From the 15th-week of age to birth and postnatally, the
new pyramidal neurons apical dendrites continue to elongate
functionally by the incorporation of additional synaptic mem-
brane, while retaining their original functional anchorage to
first layer (Figures 2, 3, 4A, and 5A). The development of
basal dendrites and the appearance of apical dendritic spines
have been the criteria for determining the starting functional
maturation of the new pyramidal neurons of each ascending
stratum. The human motor cortex gray matter functional mat-
uration is an ascending and stratified process that starts around
the 16th week of age with the establishment of the first (P1)
pyramidal cell functional stratum, layer V in current nomencla-
ture (Figure 1B). The motor cortex subsequent ascending and
stratified functional maturation will progress throughout late pre-
natal and early postnatal life (Marin-Padilla, 2011). By the 20th
week of age a second (P2) pyramidal cell functional stratum is
added above the first one and, consequently, the apical dendrite
of P1 pyramidal neurons will further elongate, both anatom-
ically and functionally. This dual developmental process: the
incorporation of a new pyramidal cell functional stratum and
the elongation of the apical dendrite of all pyramidal neurons
of previous strata will be repeated during the cortex prenatal
functional maturation (Marin-Padilla, 1992, 2011). By the 25th
a third (P3) pyramidal cell functional stratum is added above
the previous ones; by the 30th a fourth (P4) pyramidal cell
stratum is added; by the 35th a fifth (P5) one is added and
by the 40th a sixth (P6) one start to mature (Figures 1-5).
The pyramidal neurons ascending and stratified functional mat-
uration is accompanied by the concomitant incorporation, on
each new stratum, of inhibitory neurons, microvasculature, and
protoplasmic astrocytes (Marin-Padilla, 2011). Consequently, the
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FIGURE 2 | Composite figure of photomicrographs from rapid Golgi
preparations of the motor cortex of human fetuses of 30 (A), 33 (B), 29
(C), and 32 (D) weeks of age showing the sequential ascending
stratification of the gray matter pyramidal neurons functional strata,
At this age four basic (P1, P2, P3, and P4) pyramidal cell functional
strata are recognized in the motor cortex. The neurons of each stratum
have developed basal dendrites and apical dendritic spines, reflecting their
ascending maturation. (B) This photomicrograph was obtained from one of
Cajal original (1890) Golgi preparations labeled motor cortex of a 33-week-
old fetus. However, the presence of a P5 pyramidal cell functional stratum
suggests that the fetus was older, possibly 35-week of age. (D) Also shows
a descending first lamina special astrocyte (G) still attached to the cortex
EGLM representing a precursor of gray matter protoplasmic astrocytes as
well as a bitufted (bb) neuron. The arrows (B,D) mark the presence of
Cajal-Retzius thick horizontal axons within the first (I) lamina. The
illustrations microscopic magnifications are unequal. (Modified from
Marin-Padilla, 2011).

first (P1) pyramidal cell functional stratum (layer V in current
nomenclature) will be shared by all mammals and will control
the developing fetus motor activities (Figure 4B). These neu-
rons axons become the source of the main projective motor
pathways to subcortical centers and eventually to the animal mus-
culature, for life (Figure 4B). The number of pyramidal cell
functional strata in the cerebrum of each mammalian species
reflects and parallels its motor proficiencies and abilities and
increases during their evolution (Figure 4B). This figure sim-
ply reflects this paper basic conception without any additional
implication.

FIGURE 3 | Composite figure of photomicrographs including a rapid
Golgi (A) and a hematoxylin and eosin (B) preparation of newborn
infants motor cortex showing their different staining capabilities.
While in Golgi preparations (A) the whole neuron (dendritic branches with
spines and axon with collaterals) is stained as well as the local
microvasculature and gray matter protoplasmic astrocytes, in H & E
preparations (B) only the neurons and glial cells bodies are stained.

(A) lllustrates, at similar microscopic magnification, the size (apical dendrite
length) and dendritic morphology of analogous deep, large, and early motor
pyramidal neurons of the P1 stratum from a 15-week-old fetus (inset) and a
newborn infant. While remaining functionally anchored to first lamina, the
fetus P1 pyramidal neuron size (apical dendrite length) measures about
270 wm, has few short basal dendrites and a couple of dendritic spines
(see Figure 1B), the newborn motor pyramidal neuron (A) has elongated
the apical length, both anatomically and functionally to around 1,500 wm.
These neurons apical dendrite, the terminal dendritic bouquets within the
first lamina, the several collaterals dendrites and the long basal ones all
covered by innumerable dendritic spines (postsynaptic structures).
Moreover, the pyramidal neuron dendrites will continue to elongate
anatomically and functionally during postnatal life while retaining its first
lamina functional anchorage and its body cortical location. The cortex motor
regions pyramidal neurons will operate the human's unique motor
activities, such as: speaking, writing, painting as well as thinking as a
premotor cortical activity. (B) H & E preparation of the motor cortex of a
newborn infant showing its overall cytoarchitecture, the pyramidal neurons
of P1 functional stratum (layer V in current nomenclature), the apparently
barren first lamina (1) and a thin remnant of still undifferentiated neurons
from the original pyramidal cell plate (PCP) under the first lamina. These
neurons will mature functionally during early postnatal life and will
incorporate an additional (P7) pyramidal cell stratum of the human motor
cortex. (Modified from Marin-Padilla, 2011).

Furthermore, the motor cortex of newborn mammals, I have
studied, still have a thin remnant, under the first lamina, of
the original undifferentiated PCP (Figure 3B). These neurons
will mature functionally during the animal’s postnatal life and
will incorporate an additional pyramidal cell functional stratum

Frontiers in Neuroanatomy www.frontiersin.org January 2014 | Volume 7 | Article 51 | 5


http://www.frontiersin.org/Neuroanatomy/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroanatomy/archive

Marin-Padilla

New theory on prenatal development

'HUMAN MOTOR CORTEX

Prenatal Ascending and Stratified
Functional Maturation of Deep
(P1) Pyramidal Neurons

MAMMALIAN SPECIES

wm—=>»ZT -0

»>—@w—IT0I>
»>—r——om>D
PHO<——"OmMNZ—
»>—=—ZmMOO>™
. »PRO<—Z2>N

:
7N

New Developmental Cytoarchitectonic Theory

FIGURE 4 | Composite figure of schematic drawings showing (A) the
prenatal sequential, ascending and stratified anatomical and
functional maturations of a large, deep, and first to arrive (P1)
pyramidal neuron of the human motors cortex; and, (B) the
vertebrate’s new cerebral cortex evolution and laminar reciprocities
through amphibians, reptiles, and mammals. (A) lllustrates a motor
pyramidal neuron prenatal development and the anatomical and functional
elongations (extensions) of its apical dendrite retaining its original
functional attachment to first lamina and the location (cortical depth) of its
body. During each developmental stage, the neuron incorporates an
additional segment of functional (synaptic) membrane to its apical dendrite
induced and regulated by the ascending penetration of thalamic and other
afferent fibers from the white matter. The human motor pyramidal neurons,
after completing their ascending migration (from the 8th to the 15th week
of age), incorporate the first functional segment at 15-week of age, a
second functional segment is incorporated at 20-week of age, a third one at
25, a fourth one at 30, a fifth one at 35, and a sixth one by birth time. A
remnant of the original undifferentiated pyramidal cell plate, shared by all
newborn mammals, will mature during early postnatal life and incorporates
an additional functional segment to the pyramidal neuron. (B) Schematic
drawing illustrating the proposed developmental cytoarchitectonic theory
concerning the ascending functional maturation and stratification
(evolution) of vertebrates cerebral cortex and the laminar (strata)
correspondences among amphibians, reptiles and mammals. The small
arrows indicate the undifferentiated pyramidal cell remnant participation in
the evolution of the additional pyramidal cell functional strata in the course
of mammalian evolution. The large arrow indicates the human cerebrum
evolving possibilities as an open biological system capable of further
stratification and progression. The drawing has no other implications
concerning mammals’ evolution that certainly is not a lineal one (Modified
from Marin-Padilla, 2011).

to each species motor cortex (Figure 4B, small arrows). Their
postnatal maturation would help, each mammal, to confront
new environmental challenges and to develop novel and appro-
priate motor activities to maneuver them. It would seem that

Z0——-H0OZCm
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FIGURE 5 | Composite figure of camera lucida drawings from rapid
Golgi preparations illustrating (A) the newborn infant motor cortex
overall neuronal composition, stratification, and ascending functional
maturation (large ascending arrow) from lower and older to upper and
younger pyramidal cell strata and (B) an original Cajal drawing
illustrating the cerebral cortex descending cascade of functional
inputs (arrows) from upper (younger) to lower (older) pyramidal cell
strata. (A) This drawing illustrates (at similar magnification) the various
pyramidal cells functional strata from the deeper older and larger neurons
to the superficial smaller and younger ones with several intermediate
ones, various type of inhibitory (baskets and bi-tufted, chandeliers)
neurons, Martinotti cells with ascending axons and first lamina with Cajal-
Retzius cells and long horizontal axons and the terminal dendritic bouquets
if all underlying pyramidal neurons. The drawing also illustrates the
correspondences between the current descending (layers |, I, lll, IV, V, and
VI) laminar nomenclature (left side) with the proposed ascending one (P1,
P2, P3, P4, P5, P6) supported by developmental data (right side). A thin
remnant of the original pyramidal cell plate (PCP) is also illustrated under
the first lamina. (B) Cajal’s original drawing illustrating his conception of the
cerebral cortex descending functional activity. Also illustrated are first
lamina Cajal-Retzius cell (F), the numerous horizontal axonic fibers and the
terminal dendritic bouquets of the underlying pyramidal neurons. The first
lamina also receives (ascending small arrows) the terminal of afferent fibers
(G) from the white matter and the axons of Martinotti (E) cells. The cortex
descending functional activity results from the combination of the
interconnecting and descending functional inputs (small arrows) from the
upper (A) through the intermediate (B,C) to the deeper (D) pyramidal cell
strata. The pyramidal neurons descending axons also reach the white (H)
matter. The deeper pyramidal neurons that receive cascading functional
inputs from all upper pyramidal neurons are the source of the projective
motor pathways to subcortical centers and eventually to the animal
musculature. | have incorporated to two large arrows: an ascending
(functional maturation) one to my drawing and a descending (function) one
to Cajal’s.

each mammalian species develop the number of pyramidal cell
functional strata needed for operating its motor activities and
for confronting new challenges during their postnatal existence
(Figure 4B). Moreover, I have recognized remnants of undiffer-
entiated pyramidal cells, under the first lamina, even in the motor
cortex of some adult mammals. Perhaps, suggesting the possibility
of developing new motor capabilities throughout the mammal’s
postnatal life. The possible significance of this feature should be
further investigated in postnatal brains studies.
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The human newborn motor cortex is also characterized by the
presence, under first lamina, of a thin remnant of the original
undifferentiated PCP (Figures 3A,B, 4A,B, and 5A). This rem-
nant matures postnatally and is no longer recognizable in the
motor cortex of young children. Its postnatal functional matura-
tion adds an additional (P7) pyramidal cell stratum to the human
motor cortex (Figures 4B and 5A,B). The presence of both P6 and
P7 pyramidal cell strata distinguishes the human motor cortex
from that of other primates. The functional activity of these addi-
tional P6 and P7 pyramidal cell strata should participate in the
operation of our unique motor and mental capabilities includ-
ing language as well as the capacity of thinking as a premotor
activity.

The new pyramidal neuron essential and distinguishing feature
is the capacity of elongating — anatomically and functionally —
its apical dendrite and of incorporating additional sensory infor-
mation without losing its original anchorage to first layer or the
location (cortical depth) of its soma. Actually, without altering
its essential nature throughout the course of mammalian evolu-
tion (Marin-Padilla, 1992). By increasing its main receptive surface
(apical dendrite and collaterals), the new pyramidal neuron can
incorporate the additional sensory information needed for con-
trolling mammals’ increasing motor activities (Figures 1-5). Such
that the length of the apical dendrite (neuron size), the amount
of synaptic information it could store (dendritic spines and other
synaptic contacts) and the number of functional strata should
reflect and distinguish each mammalian species cerebrum motor
capabilities. Comparatively, the apical dendrite length of deep,
large, and old pyramidal neurons of the mouse neocortex should
be shorter and should storage less amount of synaptic informa-
tion than those of a human and those of cats should be about
intermediate (Marin-Padilla, 1967, 2011; Valverde, 1967). In the
three instances, the new pyramidal neuron essential nature has
remained unaffected while its size (apical dendrite length) and
motor competence have increased. In my opinion, any neuron
that does not establish original contacts with first lamina and/or
lose them, despite the shape of its soma, should not be considered
and/or labeled, as mammalian pyramidal neuron.

The prenatal development of pyramidal neurons in other mam-
malian species should be studied because the available data is
deficient.

A NEW CYTOARCHITECTONIC THEORY

Based on these developmental observations new developmental
cytoarchitectonic theory has been proposed for the evolving mam-
malian neocortex (Marin-Padilla, 1992). The new theory proposes
that the mammalian neocortex development is an ascending
and stratified processes and that the number of pyramidal cells
functional strata (laminae) increases paralleling the mammals’
increasing motor capability (Figure 4B). Accordingly, the hedge-
hog motor cortex essentially requires only two pyramidal cell
functional strata to accomplish all its motor needs, the mouse
3, the cat 4, the monkey 5, and humans 6 and a seventh one
added postnatally (Figure 4B). In addition, the newborn motor
cortex in all mammalian species still has an undifferentiated pyra-
midal cell stratum, under first lamina, that will mature postnatally
adding an additional stratum to the motor cortex. The postnatal

functional maturation of this last stratum prepares the animal
for confronting and operating new challenges by novel motor
activities (Figure 4B, small arrows). The progressive ascending
penetration of white matter thalamic and other afferent fibers into
the developing gray matter induces and regulates the gray mat-
ter ascending and stratified functional maturation. As new motor
activities evolve during mammalian evolution the penetration of
afferent fibers (from thalamic and cortical sources) continues to
ascend (penetrate) into the developing gray matter inducing the
functional maturation of the additional pyramidal cell strata that
characterize each new species. The number of neocortical neu-
rons (genetically determined) that characterizes each mammalian
species has also increased during their evolution. There seen to be
a tendency for the width of mammals’ neocortex to increase in the
direction of highly organized motor activities (Blinkov and Glezer,
1968).

NEOCORTEX DESCENDING VERSUS ASCENDING
STRATIFICATION

The current understanding of the mammalian neocortex lami-
nation (stratification) needs to be reevaluated as two opposite
conceptions: the descending one currently used and the ascending
one suggested herein, have been proposed (Figure 5A). The clas-
sic and universally accepted theory proposes that the mammalian
neocortex is subdivided into a series of descending laminae (layers
L 1L, 11, 1V, V, and VI). Although unsupported by developmen-
tal data, this old theory (Broadman, 1909) has been universally
accepted without any challenge and/or validation. Moreover, the
idea that the mammalian neocortex, from edentates to primates,
has (essentially) six descending laminations (strata) is arbitrary
and unsupported by developmental data. To maintain the six
cortical laminae (strata) for all mammalian species has lead to
using arbitrary nomenclatures, including laminar concentrations
for lower mammalian species (lamina II-ITI-IV for edentates and
lamina II-III for rodents) as well as laminar duplications (laminae
IIa and IIb) for primates and even triplications (laminae II1a, IIIb,
and Illc) for humans (Marin-Padilla, 1978). Reductions as well as
duplications of neocortical laminae are arbitrary and fail to reflect
the neocortex development, neurohistology, and functional activ-
ity as well as mammals increasing motor capabilities. In the course
of mammalian evolution, the number of pyramidal cell functional
strata (laminae) has actually increased to reflect their increasing
motor capabilities (Figure 4B).

This dual conundrum needs also to be resolved because of
the obvious and significant functional implications involve. It
is essential to establish if the neocortex cytoarchitecture is a
descending and/or an ascending process. Likewise, the number
laminations (strata) in mammals’ neocortex need to be estab-
lished. Such clarifications are beyond the scope of the present
study.

ASCENDING MATURATION VERSUS DESCENDING
FUNCTION

The functional maturation of the neocortex gray matter (pyra-
midal, non-pyramidal and inhibitory neurons, blood capillaries,
protoplasmic astrocytes, and penetration of afferent fibers) is
an ascending and stratified process from lower and older strata
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to superficial and younger strata. However, the neocortex func-
tional activity is a descending process as originally proposed by
Cajal (1933) and corroborated by recent neurophysiologic studies
(Weiler etal., 2008).

The deepest P1 pyramidal neurons, shared by all mammals, are
the essential projective elements to subcortical centers and even-
tually to the animal musculature. These projective neurons receive
a descending functional cascade from all pyramidal neurons of
the upper strata (Figure 5B). The axons of upper pyramidal neu-
rons establish functional contact with the dendrites of lower strata
neurons establishing a descending functional cascade from upper
and recent strata to lower and older ones (Figure 5B). Inhibitory
as well as non-pyramidal neurons of each stratum also participate
and regulate this cascading functional activity. For each mam-
malian species, the amount of information received by the deepest,
older and projective P1 pyramidal neurons will be a combination
of inputs received from all pyramidal neurons of the above strata.
Their functional output to subcortical centers and eventually to
the animal musculature will be selected from this descending func-
tional cascade. The operating capacity and the complexity of the
descending functional cascade upon mammals’ shared muscula-
ture will depend on the number of participating pyramidal cell
strata. The greater the number of pyramidal cell functional strata
the greater the mammal’s motor capabilities. The fact that the
number of pyramidal cell functional strata as well as mammal’s
motor capabilities have concomitantly increased in the course of
mammalian evolution will further corroborate these assumptions
(Marin-Padilla, 1978, 1992).

CONCLUSION

While mammals share similar body anatomy, four extremities,
analogous musculatures, and motor activities their motor capabil-
ities have progressively increased in the course of their evolution.
How mammals operate their increasing motor capabilities using
common and shared skeletal, muscular and nervous structures
remain unexplained. A possible developmental explanation, sup-
ported by prenatal Golgi studies of the human motor, is offered
herein. All mammals share a new cerebral cortex (neocortex) and
a new type of pyramidal neuron that represent mammalian inno-
vations. Mammals’ new pyramidal neuron distinguishing feature
is the capacity of elongating its apical dendrite (main receptive
surface), both anatomically and functionally, without losing its
essential nature. In other words, without losing its original func-
tional anchored to first lamina or the cortical depth of its body. By
increasing its main receptive surface (apical dendrite and its col-
laterals), this new type of neuron may be capable of incorporating
the additional sensory information needed for operating mam-
mals’ increasing motor capabilities without altering its essential
nature. Moreover, the motor cortex of all newborn mammals, I
have studied, has a thin remnant of the original undifferentiated
PCP under the first lamina. These neurons will mature during
postnatal life and incorporate an additional pyramidal cell func-
tional stratum into each mammalian species motor cortex. The
functional activity of this additional pyramidal cell stratum should
prepare them, during postnatal life, for confronting new environ-
mental challenges as well as for developing novel and appropriate
motor activities to manage and operate them. Each mammalian

species develops the number of pyramidal cell functional strata
needed and necessary for operating its motor activities. Conse-
quently, the number of pyramidal cell functional strata in the
neocortex has increased concomitantly with the animal increas-
ing motor capabilities. Non-pyramidal and inhibitory neurons,
blood vessels and glial cells are also sequentially and concomi-
tantly incorporated into these ascending functional strata and will
co-participate in their functional activity. These simple evolution-
ary strategies, development of a new cerebral cortex and of a new
type of pyramidal neuron, shared by all mammals, operate their
increasing motor capabilities by reusing essentially analogous body
parts, musculature, extremities, cerebral structures, and neural
parkways.

The presence of additional P6 and P7 pyramidal cell func-
tional strata distinguishes the human cerebrum. The presence
in our cerebrum of these two additional pyramidal cell strata
as well as the learned (not inherited) capability of using them
effectively is what distinguished us from other primates. Pos-
sibly, the learned functional activity of these additional strata
operates our species unique cognitive capabilities, the motor
expression of mental thoughts through the use of language as
well as through other uniquely human motor activities, such as
writing, painting, sculpturing, making and playing music, and
practicing sports. The participation of other cortical areas (frontal,
visual, parietal, and temporal) is certainly implanted in our cog-
nitive activities. The entire brain (a premotor organ) participates
in our cognition but the motor activities are channeled through
the motor region pyramidal neurons and eventually to muscula-
ture. Words expressing my thoughts are readily understood by
other humans, become incorporated into their mental cogni-
tion and their ensuing thoughts are translated into words that I
could also readily understand. This simple interchange of human
thoughts through motor activities has existed since the dawn of
our existence. It represents a simply motor activity, wanting any
mystery, performed by the functional activity of our cerebrum
new pyramidal neurons. There are no limits to our learned capa-
bility for expressing thoughts and/or intentions through motor
actions.

Essentially, our cerebrum is a premotor organ that commands
and operates all our motor activities, including language, and
what distinguishes us as a unique species. Homo sapiens repre-
sent a new and unique evolutionary stage of primates that, in my
opinion, has humanized his primate brain by incorporating addi-
tional motor capabilities. The Homo sapiens present evolutionary
stage is not a final one as mammal’s new cerebral cortex is an
open biological system capable of evolving further by incorpo-
rating additional pyramidal cell functional strata. Perhaps, Homo
sapiens have the potential of evolving further into a more humane
species (Homo humanus) by educating his brain and himself and
by improving his conduct toward others. Although this possible
evolutionary step has occurred but only in a very few and iso-
lated instances throughout his existence. In my opinion, human
are not born, they (he and she) have to make themselves by oper-
ating through the cerebrum the motor neurons of the sixth and
seventh pyramidal cell strata, unique to the species, for thinking
(premotor activity) and expressing their thoughts through motor
actions.
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The developmental information and ideas outlined herein are
offered are proposals based on rapid Golgi observations of the pre-
natal development of the human motor cortex pyramidal neurons.
They have emphasized that the new cerebral cortex (neocortex)
and the new type of pyramidal neuron are mammalian innova-
tions. Also that mammals’ new pyramidal neuron is capable of
elongating, anatomically and functionally, its apical dendrite and
incorporate the additional sensory information needed for operat-
ing their increasing motor capabilities. From edentates, to rodents
to carnivores to primates to humans, this unique and shared
type of pyramidal neuron has progressively extended anatomi-
cally and functionally its apical dendrite increasing its receptive
surface and motor capabilities without losing its essential nature.
The evolution of the human brain evolution is not yet final as
new obstacles (extraterrestrial explorations) will arise that will
require his attention, study and resolution through new motor
activities.

I would like to emphasize that this paper simply introduces
a hypothesis concerning the development of mammals’ new
pyramidal neurons and has no additional pretentions and/or
goals. It is based on prenatal developmental Golgi studies of the
human motor cortex pyramidal neurons and of its associated neu-
ronal, microvascular, and glial systems. To corroborate, validate
and/or invalidate the structural and functional concepts concern-
ing mammals’ new cerebral cortex and new type of pyramidal
neuron introduced in this paper, additional inquiries and studies
will certainly be needed.
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